System Performance - ASUS ROG Maximus XIII Hero Review: Everything for Rocket Lake

Posted by Martina Birk on Monday, July 15, 2024

System Performance

Not all motherboards are created equal. On the face of it, they should all perform the same and differ only in the functionality they provide - however, this is not the case. The obvious pointers are power consumption, POST time, and latency. This can come down to the manufacturing process and prowess, so these are tested.

For Z590 we are running using Windows 10 64-bit with the 20H2 update.

Power Consumption

Power consumption was tested on the system while in a single MSI GTX 1080 Gaming configuration with a wall meter connected to the power supply. Our power supply has ~75% efficiency > 50W, and 90%+ efficiency at 250W, suitable for both idle and multi-GPU loading. This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency. These are the real-world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

While this method for power measurement may not be ideal, and you feel these numbers are not representative due to the high wattage power supply being used (we use the same PSU to remain consistent over a series of reviews, and the fact that some boards on our testbed get tested with three or four high powered GPUs), the important point to take away is the relationship between the numbers. These boards are all under the same conditions, and thus the differences between them should be easy to spot.

Power: Long Idle (w/ GTX 1080)Power: OS Idle (w/ GTX 1080)Power: Prime95 Blend (w/ GTX 1080)

Compared with other Z590 models that we've tested, the ASUS performs well in power consumption, with respectable figures across the board.

Non-UEFI POST Time

Different motherboards have different POST sequences before an operating system is initialized. A lot of this is dependent on the board itself, and POST boot time is determined by the controllers on board (and the sequence of how those extras are organized). As part of our testing, we look at the POST Boot Time using a stopwatch. This is the time from pressing the ON button on the computer to when Windows starts loading. (We discount Windows loading as it is highly variable given Windows-specific features.)

Non UEFI POST Time

In regards to non-UEFI POST times, the ASUS sits middle of the pack with a default POST time of 17.4 seconds. We did manage to shave this down to 15.6 seconds with nonessential controllers disabled, with models tested that have Thunderbolt 4 controllers tending to be a little slower than those without.

DPC Latency

Deferred Procedure Call latency is a way in which Windows handles interrupt servicing. In order to wait for a processor to acknowledge the request, the system will queue all interrupt requests by priority. Critical interrupts will be handled as soon as possible, whereas lesser priority requests such as audio will be further down the line. If the audio device requires data, it will have to wait until the request is processed before the buffer is filled.

If the device drivers of higher priority components in a system are poorly implemented, this can cause delays in request scheduling and process time. This can lead to an empty audio buffer and characteristic audible pauses, pops and clicks. The DPC latency checker measures how much time is taken processing DPCs from driver invocation. The lower the value will result in better audio transfer at smaller buffer sizes. Results are measured in microseconds.

Deferred Procedure Call Latency

We test DPC latency out of the box at default settings, and the ASUS board managed to yield the best results so far, with a solid result of 71.2 microseconds.

ncG1vNJzZmivp6x7orrAp5utnZOde6S7zGiqoaenZH53g5ZqZpqrpah6s7vGZqSasJmiwrR516KgomWYmr%2BwedGeraKdp2J8dg%3D%3D